
Using Model Driven Development to Implement
SCA v4.0 Compliant DSP and FPGA Based

Applications

Andrew Foster, Product Manager, PrismTech Corporation

SDR-WInnComm, January 9th 2012

2Agenda

Introduction to SCA 4.0
SCA 4.0 CORBA PSM
SCA 4.0 Middleware
SCA 4.0 Model Driven Development

Addressing the key challenges
Application modelling for GPP, DSP and
FPGA
Hybrid models – split component model
Device Modelling
Model driven testing

Introduction to SCA 4.0

4

The Software Communications
Architecture (SCA) has remained
largely unchanged since 2001
when v2.2 was released and the
Joint Tactical Radio System
(JTRS) program started.
SCA 4.0, approved February
2012, represents a radical shift in
the approach to specifying the
architecture, design and
implementation of a software
defined radio (SDR).

Background

4

5SCA 4.0 Approach

The SCA 4.0 specification has been developed following
the Model Driven Architecture (MDA) approach
The base specification has been developed as a
Platform Independent Model (PIM)
Appendices define transfer mechanisms to provide co-
located or distributed client/server operations.
Currently the only transfer mechanism indentified in a
Appendix E is based on the Common Object Request
Broker Architecture (CORBA)
Appendix E-1 defines the CORBA PSM for use with SCA
4.0

SCA v4.0

JPEO Objectives
Reduce development resources

Budget
Schedule

Reduce test and certification time
Reduce number of requirements
Increase use of automated testing

Improve performance
Reduce boot up latency

Reduce memory footprint
Technology refresh
Incorporate lessons learned
Backwards compatibility of applications is an
overarching tenet

6

6

SCA v4.0 Key Changes

Lightweight Components
Component Registration
Deployment Optimizations
Profiles and SCA Conformance
Platform Independent Model

7

7

8

Operating System

ORB and
CORBA
Services

Core Framework Control,
Services, Devices, and

File access
AEP

Application Resources

CORBA APIs
CF Interfaces

Operating System

ORB and
CORBA
Services

Core Framework Control,
Services, Devices, and

File access
AEP

Application Resources

CORBA APIs
CF Interfaces

SCA 2.2.2 OE and AEP

SCA 2.2.2 specifies the use of CORBA as the protocol for data transfer and inter-
process application function calls.

9SCA 4.0 OE and AEP

SCA products can be realized using a variety of transports and technologies (e.g.
CORBA, C++, SOAP, Data Distribution Service (DDS), MHAL Communication
Service, etc.). (excerpt from Appendix E)

10Model Driven Architecture Views

SCA 2.2
SCA 2.2.1
SCA 2.2.2

CIM – Computationally Independent Model
PIM – Platform Independent Model
PSM – Platform Specific Model
PSI – Platform Specific Implementation

SCA 4.0 AppendicesSCA 4.0

Functional
View

Architecture
View

Design
Model

Implementation
and Deployment

11PSM Appendices

E Transports and Technologies
E.1 – Common Object Request Broker
Architecture (CORBA)

Full – Provides features for general platforms and
applications
Lightweight – Provides minimal features for highly
constrained resources
Ultra-Lightweight – Essential capabilities supported
by FPGAs

E.2 – C++
E.3 – OMG Interface Definition Language

SCA 4.0 CORBA PSM

13Appendix E-1 CORBA PSM

Three CORBA profiles based on CORBA/e with
additional features from RT CORBA
The SCA CORBA profiles are characterized as follows:
1. SCA Full CORBA (Full) Profile – is the Full CORBA profile and is

targeted for applications hosted on GPPs
2. SCA Lightweight CORBA (LW) Profile – is more constrained than the

SCA Full CORBA Profile and is targeted towards environments with
limited computing support (e.g. DSPs)

3. SCA Ultra-Lightweight CORBA (ULW) Profile – is more constrained
than the SCA Lightweight CORBA Profile and is specifically intended
for processing elements with even more limited computing support
(e.g., DSPs & FPGAs)

14Appendix E-1 CORBA PSM

Each profile characterizes the IDL features allowed for definition of
interfaces between application components.
The LW Profile narrows the IDL feature set in order to limit the
processing overhead caused by a number of types in the Full
Profile.
The ULW Profile narrows the constructs even further to
accommodate typical limitations of DSP and FPGA environments.
The shared IDL foundation of the profiles facilitates portability not
only between platforms, but also across processing elements and
transfer mechanisms.
Component portability may be enhanced if the IDL from more
constrained profiles are used when defining application interfaces
targeted for components deployed within less constrained
processing elements.

15Full Profile (Highlights)

Based on CORBA/e Compact Profile
IDL data types - boolean, octet, short, unsigned short, long,
unsigned long, enum, float, double, long double, long long,
unsigned long long, char, string, unions, arrays, struct, sequence,
object
Minimum CORBA POA
Restricted Any data type
SYNC_SCOPE_POLICY
RT CORBA – including PriorityModelPolicy,
PriorityBandedConnectionPolicy, ServerProtocolPolicy and RT
Thread Pools
COS Event – PushSupplier and PushConsumer
ORB_init() parameters - allows Root POA to be created with non
default parameters

16Lightweight Profile (Highlights)

Based on CORBA/e Micro Profile
IDL data types - boolean, octet, short, unsigned short,
long, unsigned long, enum, float, double, long double,
long long, unsigned long long, char, string, unions,
arrays, struct, sequence, object
Any data type not allowed
Root only POA
ORB_init() parameters - allows Root POA to be created
with non default parameters

17Ultra-Lightweight Profile (Highlights)

ULW profile only standardises
the subset of IDL a CORBA
capable FPGA can use
String, Any or Object data
types not allowed
ORB internal details are
unspecified and could be
implemented in a number of
ways, for example:
1. Software ORB – using a

processor core
embedded on the FPGA

2. Hardware ORB – key
functions of an ORB
implemented as an IP
core

IDL basic data types Short

Long

unsigned short

unsigned long

Boolean

Octet

IDL complex data types struct (restricted to supported basic data types)

 sequence (restricted to supported basic data types)

Enum

IDL keywords Module

Interface

In

Out

Inout

Void

Typedef

oneway

Return value
Return values of a basic data type to be supported

18SCA 4.0 Resource Interface 18

19Resource Interfaces Supported by Each CORBA Profile

Resource Interfaces Optional
Category

Attributes & Operations Full
Profile

Lightweight
Profile

Ultra-
Lightweight
Profile

LifeCycle Mandatory initialize():void
releaseObject(): void   

ComponentIdentifier INTERROBABLE identifier: string   ×**
PortAccessor CONNECTABLE connectUsesPorts(Connections): void

disconnectPorts(Connections): void
getProvidedPorts(Connections): void

  ×***

ControllableComponent CONTROLLABLE started: boolean
start(): void
stop(): void

  

PropertySet CONFIGURABLE configure(Properties): void
query(Properties): void  ×* ×

TestableObject TESTABLE runTest(unsigned long, Properties): void  ×* ×

* Requires support for Any data type
** Requires support for String data type
** Requires support for Object data type

SCA 4.0 Middleware

Spectra SDR Product Suite 21

Spectra
CX

Spectra
CF

Spectra
CDB

Spectra
DTP

Spectra CX is a model-
driven development tool
that enables SDR and

waveform software to be
rapidly developed,

integrated and tested.
Spectra CX allows radio

platform details to be
packaged and delivered to

distributed independent
development groups using
the tools to hide platform
complexities and IP as

needed.

Spectra Core
Framework (CF) is a
high-performance,
ultra low footprint,
radio management

framework providing
advanced capabilities
and extensibilities for

multiple software
radio architectures.

Spectra Common Data Bus
(CDB) is a high-

performance, integrated data
bus providing a unified data

exchange protocol and
format. Spectra CDB

supports a wide range of
General Purpose Processor

(GPP), Digital Signal
Processor (DSP) and Field
Programmable Gate Array

(FPGA) processing
elements.

Spectra DTP is an SDR
development and test
platform that supports
waveform design and

implementation for military,
homeland security and

commercial SDRs. Spectra
DTP is an optimized small

form-factor platform with low
power consumption that

enables the development,
testing and deployment of

waveforms.

PrismTech Proprietary Information

22Spectra Common Data Bus (CDB) – “SCA Everywhere”

SCA Everywhere

22

Spectra ORB
C & C++

Spectra ORB
C

Spectra ICO
VHDL

Extensible Transport Framework (TCP/IP, Rapid IO, Gigabyte Ethernet etc.)

Waveform
Component

Waveform
Component

Waveform
Component

GPP DSP FPGA

Spectra SCA
CF

Standards based, high performance, low footprint, fully interoperable COTS SCA middleware
solution that can be deployed across multiple processor types, including GPP, DSP and FPGA
environments

23Spectra Common Data Bus (CDB)

Spectra Common Data Bus (CDB) is a fully integrated and optimized Software Defined
Radio (SDR) middleware stack

Spectra Common Data Bus (CDB), runs across a wide range of General Purpose
Processor (GPP), Digital Signal Processor (DSP) and Field Programmable Gate Array
(FPGA) processing elements

Spectra CDB includes the following:
Spectra ORB

C++ ORB (for GPP)
C ORB (for GPP and DSP)

Spectra Lightweight Services
Spectra Lightweight Naming Service
Spectra Lightweight Event Service
Spectra Lightweight Log Service

Spectra IP Core ORB (ICO) for FPGA and ASIC

24Spectra CDB SCA 4.0 Roadmap

Spectra CDB suite of CORBA ORBs will be fully
SCA 4.0 compliant by early 2013

Spectra ORB v2.0
Spectra ORB C++ Edition will provide support for SCA 4 Full
Profile
Spectra ORB C Edition will provide support for SCA 4 Full and
Lightweight Profiles

Spectra ICO v2.3
ICO already supports SCA 4 Ultra-Lightweight Profile

ULW profile defines a subset of the functionality and data types that ICO can
actually support

SCA 4.0 Model Driven Development

26

Host Development Tools

Workbench

Windows / Linux / Unix

Hardware (GPP, DSP, FPGA)

Spectra CX:
Model Driven
Development Tool

Generate

MDD

Generate

Generate Spectra CDB: ORB

Spectra CF: SCA 2.2.2. Core Framework

SCA Infrastructure

Radio Application
(waveform)

Target Radio Platform

RTOS

GPP

Spectra CDB:
ICO

DSP FPGA

DSP BIOS

SCA Infrastructure

Radio Application
(waveform)

IBM RSA

Spectra Model Driven SCA Development

End-to-End: Model, Validate, Generate, Develop, Build, Test, Deploy

27Spectra CX in the SDR WF Development Flow 27

Functional WF Block Model

PushData

PushDataInv

FIR_Filter

+ configure() :void
+ getPort() :void
+ query() :void
+ runTest() :void
+ start() :void
+ stop() :void

Resource

PushData

PushDataInv

Deployment
Criteria and
Protocol is
specified

hci

tx_inc
rx_inc
crc_inc

t_cd_on
t_cd_off

config

«block»
Phy::HCI

hci

tx_inc
rx_inc
crc_inc

t_cd_on
t_cd_off

config

t_cd_on
t_cd_off
carrier

detect

«block»
Phy::Cd

t_cd_on
t_cd_off
carrier

detect

rx_inc
crc_inc

outin

«block»
Phy::Rx

rx_inc
crc_inc

outin

voice_in

rf_in

config
tx

trans_sec

reset
rf_out

rf_freq

carrier
rx

voice_out

«block»
Phy::Fsm

voice_in

rf_in

config
tx

trans_sec

reset
rf_out

rf_freq

carrier
rx

voice_out

rf_freq
rf_out

antenna
rf_in

«block»
Phy::Radio

rf_freq
rf_out

antenna
rf_invoice_outvoice_in

reset

«block»
Phy::Ptt

voice_outvoice_in
reset

in

out

tx_inc

«block»
Phy::Tx

in

out

tx_inc

trans_sec

«block»
Phy::TransSec

trans_sec

rx out to Mac

RF to/from
antenna

analog
voice in

analog
voice out

HCI input/output

tx in from Mac

carrier detect
out to Mac

Waveform
application is
deployed on

target
platform

Deployment
Engine

Software
Component

Selected
Blocks Map to:

hci

tx_inc
rx_inc
crc_inc

t_cd_on
t_cd_off

config

«block»
Phy::HCI

hci

tx_inc
rx_inc
crc_inc

t_cd_on
t_cd_off

config

t_cd_on
t_cd_off
carrier

detect

«block»
Phy::Cd

t_cd_on
t_cd_off
carrier

detect

rx_inc
crc_inc

outin

«block»
Phy::Rx

rx_inc
crc_inc

outin

voice_in

rf_in

config
tx

trans_sec

reset
rf_out

rf_freq

carrier
rx

voice_out

«block»
Phy::Fsm

voice_in

rf_in

config
tx

trans_sec

reset
rf_out

rf_freq

carrier
rx

voice_out

rf_freq
rf_out

antenna
rf_in

«block»
Phy::Radio

rf_freq
rf_out

antenna
rf_invoice_outvoice_in

reset

«block»
Phy::Ptt

voice_outvoice_in
reset

in

out

tx_inc

«block»
Phy::Tx

in

out

tx_inc

trans_sec

«block»
Phy::TransSec

trans_sec

rx out to Mac

RF to/from
antenna

analog
voice in

analog
voice out

HCI input/output

tx in from Mac

carrier detect
out to Mac

Collection of Components form a
Composite Component or Application

Component
Library

Target
platform

capabilities
and

constraints

Fully specified
application,
deployment
constraints,

interconnections
and protocols

Spectra CXModeling and simulation of core
waveform algorithmic blocks in MATLAB,
SIMULINK, Mathematica, System View etc.

Spectra CX Radio Development 28

Model

Validate

Generate

Develop

Test

Deploy

Requirements

Radios

SDR/SCA
Domain
Specific

Use UML2 to capture the requirements of the system

Components, Applications, Devices, Platforms, and
deployments of Waveforms on target platforms

Runtime monitor allows users to deploy and inspect an
application in real-time

Automated unit testing of components and subsystems
of an application (waveform)

Correct-by-construction generation of the descriptors
(XML), SCA structural code, and makefiles

Validate the correctness of designs, plans, and imported
artifacts against standard

Behavior code using Eclipse IDE coding tools or 3rd
party UML, Block Diagram, and State Chart design tools

XML descriptors (sad, dcd, dmd, spd, scd, prf),
IDL, and Binary files (executable, loadable)

Build Build configuration management for the Target Platforms

29SCA 4.0 Key Challenges

SCA 4.0 is not backwardly compatible – how do I migrate my SCA
2.2.2 applications or platforms to SCA 4.0 ?
How can I build SDRs that leverage the benefits of Lightweight
Components based on the optional UOFs that SCA 4.0 has
introduced ?
Optionality has benefits but it also introduces complexity and the
possibility for inconsistencies and errors. How can this be managed
?
How can I leverage the new CORBA PSM and deploy SCA
components across GPP-DSP-FPGA processing elements ?
How do we ensure that we can leverage the benefits of the SCA 4.0
PIM/PSM separation as new SDR technologies emerge (e.g. new
non CORBA middleware) ?

30SCA 2.2.2 Model Driven Development

Spectra CX currently supports SCA 2.2.2 application and
platform development

31SCA 2.2.2 MDD for GPP & DSP

Spectra CX supports the creation of application components that
can be deployed on a GPP (C or C++) but also on a DSP (C)
A DSP component must implement the full SCA 2.2.2 Resource
interface

«CORBAInterface»
Resource

+ identifier: string

+ start() : void
+ stop() : void

«CORBAInterface»
PropertySet

+ query(configProperties :Properties) : void
+ configure(configProperties :Properties*) : void

«CORBAInterface»
PortSupplier

+ getPort(name :string) : Object

«CORBAInterface»
LifeCycle

+ initial ize() : void
+ releaseObject() : void

«CORBAInterface»
TestableObject

+ runTest(testid :unsigned long, testValues :Properties*) : void

Wav eform
Component

32SCA 4.0 MDD for the GPP
Li

fe
C

yc
le

PropertySet
Controllable
Component

Testable
Object

Component
Identifier

PortAccesso
r

In the future Spectra CX will be extended to support SCA 4.0 Resource components including
support for modelling of optional interfaces
Example above provides illustration of an SCA 4.0 Resource component implementing all optional
interfaces and targeted at a GPP

33SCA 4.0 MDD for the DSP

Example above provides illustration of an Resource component implementing optional interfaces
and targeted at a DSP enabled with SCA 4.0 CORBA middleware
For an SCA 4.0 Resource component that will be deployed on the FPGA due to restrictions in the
Lightweight Profile the optional PropertySet and TestableObject interfaces cannot be supported
The tool can be use to validate such constraints at design time instead of running into problems at
generation, build or even runtime

Controllable
Component

PortAccessor LifeCycle

Component
Identifier

34SCA 4.0 MDD for the FPGA

Example above provides illustration of an SCA 4.0 Resource component implementing optional
interfaces and targeted at a FPGA enabled with SCA 4.0 CORBA middleware
For an SCA 4.0 Resource component that will be deployed on the DSP due to restrictions in the
Ultra- lightweight Profile the optional ComponentIdentifier, PropertySet,TestableObject and
PortAccessor interfaces cannot be supported
The tool can be use to validate such constraints at design time instead of running into problems at
generation, build or even runtime enabled with SCA 4.0 CORBA middleware

LifeCycle
Controllable
Component

35Split Component Modelling (1)

Lightweight and Ultra-lightweight profiles restrict the interfaces that a Resource component
deployed on the DSP or FPGA can support.
Creating a component with ports on the FPGA (as shown above) or that can support
configure/query on the DSP is not possible when using the currently defined SCA 4.0 CORBA
profiles

GPP FPGA

36Split Component Modelling (2)

One possible approach is to host the parts of a Resource interface that cannot be support ed on a
DSP or FPGA on the GPP
The system view is of a single logical component , however the physical implementation of this
component is split across the GPP and the DSP or FPGA
In the example above connection establishment between R1 and R2 is via the getPort() operation
on R2 GPP component. However the physical connection is made to a object reference for the
R2' component on the FPGA implementing the in_push() operation
Modelling tools such as Spectra CX can be used to model and auto-generate the code required to
implement this split component behaviour

GPP FPGA

37SCA 2.2.2 to SCA 4.0 Migration

A significant issue that must be addressed is that SCA 4.0 does not
support backwards compatibility with SCA 2.2.2 application and
platform components as originally envisaged
An SCA 4.0 Core Framework will not be able to deploy an SCA
2.2.2 waveform
Significant parts of the Resource and Device interfaces such as the
connection APIs have changed between SCA 2.2.2 and 4.0
Manually migrating SCA 2.2.2 application or platform components to
SCA 4.0 will be an expensive and time consuming process
This is major area where MDD approaches can bring significant
benefits by helping automate much of the migration process

38Automating the SCA 2.2.2 to SCA 4.0 Migration Process 38

«CORBAInterface»
Resource

+ identifier: string

+ start() : void
+ stop() : void

«CORBAInterface»
PropertySet

+ query(configProperties :Properties) : void
+ configure(configProperties :Properties*) : void

«CORBAInterface»
PortSupplier

+ getPort(name :string) : Object

«CORBAInterface»
LifeCycle

+ initialize() : void
+ releaseObject() : void

«CORBAInterface»
TestableObject

+ runTest(testid :unsigned long, testValues :Properties*) : void

Wav eform
Component

SCA 4.0

SCA 2.2.2

MDD tools such as Spectra CX will be able to auto-generate an SCA 4.0 model from a SCA 2.2.2
model using a set of mapping rules
The MDD tools will generate the SCA 4.0 component container code (including XML, source
code, make files) based on the target PSM technologies
If the business code is also being maintained as part of the SCA 2.2.2 model as is possible with
tool such Spectra CX then it can also be automatically migrated into the new SCA 4.0 model
If the business code is being maintained independently (e.g. library includes) then these
references can be automatically migrated into the SCA 4.0 model

39SCA 4.0 Devices

SCA 4.0 Devices also support the concept of optional interfaces
Only mandatory interface is LifeCycle
A LoadableDevice component also inherits the LoadableDevice interface
An ExecuatbleDevice component also inherits both LoadableDevice and ExecutableDevice
interfaces

40SCA 4.0 Device Modelling

In the future Spectra CX will be extended to support SCA 4.0 Devices components including
support for modelling of optional interfaces
Example above provides illustration of an SCA 4.0 ExecuatbleDevice component implementing all
optional interfaces and representing a GPP processor

PorpertySet
Controllable
Component

Testable
Object

PropertySet PortAccessorCapacity
Management

Parent
Device

Management
Component

LifeC
ycle

Loadable
Device

Executable
Device

41SCA 4.0 Model Driven Testing 41

SCA 4.0 AppendicesSCA 4.0

Testing architecture must perform
validation of compliance with
baseline specification.

Specific test implementation must
be driven by technologies
specified in appendices.

Certification
Specification

Target System

Certified
System

42Summary

SCA 4.0 introduces major changes to the standard
Interfaces now defined specified as a PIM that can be mapped to
different PSMs
Standard aligns with a Model Driven Development approach to
developing SDRs
New CORBA PSM extends SCA support for DSPs and FPGAs
Standard introduces new challenges that SDR developers will face,
including:

How to leverage previous SCA investments – migrating from SCA 2.x to 4.x ?
How to leverage the benefits of more sophisticated PSM technologies ?
How to manage the extra complexity that having many more choices adds ?
How to test and certify SCA systems based on different interface profiles and
underlying PSM technologies ?

Model Driven Development and advanced tooling will be key to the
successful adoption of SCA 4.0

Additional Information

Andrew Foster e-mail:
awf@prismtech.com

Web Site:
www.prismtech.com/spectra

Or contact your PrismTech account
manager

43

4444

Thank You

